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Chapter 1

Set Theory

1.1 Notation

1.1.1 Common Sets
Below is the notation that is typically used for several common sets:

1. Z – integers

2. N – natural numbers (non-negative integers)

3. R – real numbers

4. R+ – non-negative real numbers

5. R++ – strictly positive real numbers

6. R− – non-positive real numbers

7. R−− – strictly negative real numbers

8. C – complex numbers

9. C+ – complex numbers with non-negative real part

10. C++ – complex numbers with strictly positive real part

11. C− – complex numbers with non-positive real part

12. C−− – complex numbers with strictly negative real part

13. F – real numbers R or complex numbers C

14. ∅ – null/empty set (set with no elements)

15. S – universal set (set of all possible elements in a given context)
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CHAPTER 1. SET THEORY

1.1.2 Quantifiers
Below are quantifiers that are commonly used in set theory:

1. ∈ – element of (a set)

2. 6∈ – not an element of (a set)

3. ⊂ – proper subset (of a set)

4. ⊆ – subset of (a set)

5. 6⊆ – not a subset of (a set)

6. ∀ – for all

7. ∃ – there exists

8. ∃! – there exists a unique

9. 6 ∃ – there does not exist

10. 3, |, : – such that (s.t.)

11. ¬ – not

1.2 Properties of Sets

1.2.1 Union and Intersection
The union of two sets A and B is denoted A ∪B and is defined as

A ∪B = {x : x ∈ A or x ∈ B}.

The intersection of two sets A and B is denoted A ∩B and is defined as

A ∩B = {x : x ∈ A and x ∈ B}.

The complement of set A is denoted AC and is defined as

AC = {x ∈ S : x 6∈ A}.

De Morgan’s law says that for two events A and B,

(A ∪B)C = AC ∩BC .
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CHAPTER 1. SET THEORY

1.2.2 Partition
A collection of sets A1, . . . , An are mutually exclusive/disjoint if and only if

Ai ∩Aj = ∅ ∀i 6= j.

A collection of sets A1, . . . , An are collectively exhaustive if and only if

n⋃
i=1

Ai = S,

where S is the universal set. A partition is a collection of sets that are both
mutually exclusive and collectively exhaustive.

Figure 1.1: This is an example of a partition. The universal set,
S, is the oval, which is composed of six disjoint and collectively
exhaustive subsets, A1, . . . , A6.
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Chapter 2

Proofs

2.1 Implications
Below are implications that are commonly used in proofs:

A =⇒ B – A implies B
A⇐= B – B implies A
A⇐⇒ B – A if and only if B

2.2 Types of Proofs
Below are a list of five common types of proofs:

1. Direct Proof – Logically derive the conclusion A ⇒ B directly from
relevant definitions, assumptions, lemmas, theorems, etc.

Example: Prove that the sum of two odd numbers is even.

Consider two integers x, y ∈ Z, where x = 2k1 + 1 for some k1 ∈ Z and
y = 2k2 + 1 for some k2 ∈ Z. We can show that s := x+ y is even, using
the following definition: a number n ∈ Z is even if n = 2k for some k ∈ Z.

s = (2k1+1)+(2k2+1) = 2k1+2k2+2 = 2(k1+k2+1) =: 2k3,where k3 ∈ Z

Therefore, s is even, proving that the sum of two odd numbers is even.

2. Proof by Contrapositive – Establish the conclusion A⇒ B by demon-
strating that ¬B ⇒ ¬A. This is useful if it is easier to work with ¬B.

Example: Show that if x2 is even, then x is even.

We can derive this conclusion by showing that if x is odd, then x2 is odd.
Suppose x = 2k + 1 for some k1 ∈ Z. Then,

x2 = (2k1+1)2 = 4k21+4k1+1 = 2(2k21+2k1))+1 =: 2k2+1,where k2 ∈ Z
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CHAPTER 2. PROOFS

Therefore, x2 is odd if x is odd. Because an integer must either be even
or odd, this allows us to say that x is even if x2 is even.

Example: Prove that not all odd numbers are prime.

3. Proof by Contradiction/Negation – Assume the given is true but the
conclusion we want to show is false (i.e. A is true and B is false). Then
show that the result contradicts this assumption. This then implies that
the conclusion B must actually be true.

Example: Prove that
√
2 is an irrational number.

We can show this by finding a contradiction to the assumption that
√
2

is a rational number. We can use the following definition: a number q is
rational if there exist a, b ∈ Z such that q = a/b, where b 6= 0. Assume
that

√
2 is rational, meaning that ∃ a, b ∈ Z such that

√
2 = a/b. Without

loss of generality, assume that a and b have no common factors.
√
2 = a/b =⇒ a2 = 2b2

Therefore, a2 is even, which implies that a is even, so a = 2k1 for k1 ∈ Z.

(2k1)
2 = 2b2 =⇒ b2 = 2k21

Therefore, b2 is even, which implies that b is also even. Because a and b are
both even, they have a common factor of 2. We have found a contradiction
to our assumption that

√
2 is a rational number whose fraction in the

simplest form is a/b. Therefore,
√
2 is irrational.

4. Proof by Construction – Construct an example that shows the fallacy
or validity of a statement. This is usually useful for disproving an assertion
such as “all X are Y” or for confirming a statement such as “there exists
an X such that Y.”

Example: Prove that not all odd numbers are prime.

Consider the number 9, which is odd because 9 = 2(4) + 1. The number
9 has the factors 1, 3, and 9, so it is not prime. Therefore, not all odd
numbers are prime.

5. Proof by Induction – First, prove the conclusion is true for an initial
condition (e.g. n = 1). Then, show that if the conclusion is true for n = k,
then it must also be true for n = k + 1.

Example: Prove that
∑n

i=1 i =
1
2n(n+ 1) for all n ≥ 1.

First consider the initial case, where n is one:

1∑
i=1

i = 1 =
(1)(1 + 1)

2
X
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CHAPTER 2. PROOFS

Now suppose that this equality holds for n = k:

k∑
i=1

i =
k(k + 1)

2

We can show that it also holds for n = k + 1:

k+1∑
i=1

i =

k∑
i=1

i+(k+1) =
k(k + 1)

2
+(k+1) =

k2 + 3k + 2

2
=

(k + 1)(k + 2)

2

Therefore, by mathematical induction, this equality holds for all n ≥ 1.
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