Fundamental Math

Sara Pohland

Created: January 3, 2021

Last Modified: December 14, 2023

Contents

1		Theor																					3
	1.1 Notation																3						
		1.1.1	Cor	nmon	Se	$_{ m ets}$																	3
		1.1.2	Qu	antifie	rs																		4
	1.2	Proper	rties	of Set	S.																		4
		1.2.1	Uni	ion an	d I	Int	ers	ect	ior	ı.													4
		1.2.2	Par	tition													•						5
_	Proofs														6								
	2.1	Implications												6									
	2.2	Types	of F	roofs																			6

Chapter 1

Set Theory

1.1 Notation

1.1.1 Common Sets

Below is the notation that is typically used for several common sets:

- 1. \mathbb{Z} integers
- 2. \mathbb{N} natural numbers (non-negative integers)
- 3. \mathbb{R} real numbers
- 4. \mathbb{R}_+ non-negative real numbers
- 5. \mathbb{R}_{++} strictly positive real numbers
- 6. \mathbb{R}_{-} non-positive real numbers
- 7. \mathbb{R}_{--} strictly negative real numbers
- 8. \mathbb{C} complex numbers
- 9. \mathbb{C}_+ complex numbers with non-negative real part
- 10. \mathbb{C}_{++} complex numbers with strictly positive real part
- 11. \mathbb{C}_{-} complex numbers with non-positive real part
- 12. \mathbb{C}_{--} complex numbers with strictly negative real part
- 13. \mathbb{F} real numbers \mathbb{R} or complex numbers \mathbb{C}
- 14. \emptyset null/empty set (set with no elements)
- 15. S universal set (set of all possible elements in a given context)

1.1.2 Quantifiers

Below are quantifiers that are commonly used in set theory:

- 1. \in element of (a set)
- 2. $\not\in$ not an element of (a set)
- $3. \subset -$ proper subset (of a set)
- 4. \subseteq subset of (a set)
- 5. $\not\subseteq$ not a subset of (a set)
- 6. \forall for all
- 7. \exists there exists
- 8. \exists ! there exists a unique
- 9. $\not\exists$ there does not exist
- 10. \ni , \mid ,: such that (s.t.)
- 11. $\neg not$

1.2 Properties of Sets

1.2.1 Union and Intersection

The union of two sets A and B is denoted $A \cup B$ and is defined as

$$A \cup B = \{x : x \in A \text{ or } x \in B\}.$$

The intersection of two sets A and B is denoted $A \cap B$ and is defined as

$$A \cap B = \{x : x \in A \text{ and } x \in B\}.$$

The complement of set A is denoted A^C and is defined as

$$A^C = \{ x \in S : x \notin A \}.$$

De Morgan's law says that for two events A and B,

$$(A \cup B)^C = A^C \cap B^C.$$

1.2.2 Partition

A collection of sets A_1, \ldots, A_n are **mutually exclusive**/**disjoint** if and only if

$$A_i \cap A_j = \emptyset \ \forall i \neq j.$$

A collection of sets A_1, \ldots, A_n are **collectively exhaustive** if and only if

$$\bigcup_{i=1}^{n} A_i = S,$$

where S is the universal set. A **partition** is a collection of sets that are both mutually exclusive and collectively exhaustive.

Figure 1.1: This is an example of a partition. The universal set, S, is the oval, which is composed of six disjoint and collectively exhaustive subsets, A_1, \ldots, A_6 .

Chapter 2

Proofs

2.1 Implications

Below are implications that are commonly used in proofs:

 $A \Longrightarrow B$ – A implies B

 $A \Longleftarrow B$ – B implies A

 $A \iff B$ – A if and only if B

2.2 Types of Proofs

Below are a list of five common types of proofs:

1. **Direct Proof** – Logically derive the conclusion $A \Rightarrow B$ directly from relevant definitions, assumptions, lemmas, theorems, etc.

Example: Prove that the sum of two odd numbers is even.

Consider two integers $x, y \in \mathbb{Z}$, where $x = 2k_1 + 1$ for some $k_1 \in \mathbb{Z}$ and $y = 2k_2 + 1$ for some $k_2 \in \mathbb{Z}$. We can show that s := x + y is even, using the following definition: a number $n \in \mathbb{Z}$ is even if n = 2k for some $k \in \mathbb{Z}$.

$$s = (2k_1+1)+(2k_2+1) = 2k_1+2k_2+2 = 2(k_1+k_2+1) =: 2k_3$$
, where $k_3 \in \mathbb{Z}$

Therefore, s is even, proving that the sum of two odd numbers is even.

2. **Proof by Contrapositive** – Establish the conclusion $A \Rightarrow B$ by demonstrating that $\neg B \Rightarrow \neg A$. This is useful if it is easier to work with $\neg B$.

Example: Show that if x^2 is even, then x is even.

We can derive this conclusion by showing that if x is odd, then x^2 is odd. Suppose x = 2k + 1 for some $k_1 \in \mathbb{Z}$. Then,

$$x^2 = (2k_1+1)^2 = 4k_1^2 + 4k_1 + 1 = 2(2k_1^2 + 2k_1) + 1 =: 2k_2 + 1$$
, where $k_2 \in \mathbb{Z}$

Therefore, x^2 is odd if x is odd. Because an integer must either be even or odd, this allows us to say that x is even if x^2 is even.

Example: Prove that not all odd numbers are prime.

3. **Proof by Contradiction/Negation** – Assume the given is true but the conclusion we want to show is false (i.e. A is true and B is false). Then show that the result contradicts this assumption. This then implies that the conclusion B must actually be true.

Example: Prove that $\sqrt{2}$ is an irrational number.

We can show this by finding a contradiction to the assumption that $\sqrt{2}$ is a rational number. We can use the following definition: a number q is rational if there exist $a, b \in \mathbb{Z}$ such that q = a/b, where $b \neq 0$. Assume that $\sqrt{2}$ is rational, meaning that $\exists a, b \in \mathbb{Z}$ such that $\sqrt{2} = a/b$. Without loss of generality, assume that a and b have no common factors.

$$\sqrt{2} = a/b \implies a^2 = 2b^2$$

Therefore, a^2 is even, which implies that a is even, so $a = 2k_1$ for $k_1 \in \mathbb{Z}$.

$$(2k_1)^2 = 2b^2 \implies b^2 = 2k_1^2$$

Therefore, b^2 is even, which implies that b is also even. Because a and b are both even, they have a common factor of 2. We have found a contradiction to our assumption that $\sqrt{2}$ is a rational number whose fraction in the simplest form is a/b. Therefore, $\sqrt{2}$ is irrational.

4. **Proof by Construction** – Construct an example that shows the fallacy or validity of a statement. This is usually useful for disproving an assertion such as "all X are Y" or for confirming a statement such as "there exists an X such that Y."

Example: Prove that not all odd numbers are prime.

Consider the number 9, which is odd because 9 = 2(4) + 1. The number 9 has the factors 1, 3, and 9, so it is not prime. Therefore, not all odd numbers are prime.

5. **Proof by Induction** – First, prove the conclusion is true for an initial condition (e.g. n = 1). Then, show that if the conclusion is true for n = k, then it must also be true for n = k + 1.

Example: Prove that $\sum_{i=1}^{n} i = \frac{1}{2}n(n+1)$ for all $n \ge 1$.

First consider the initial case, where n is one:

$$\sum_{i=1}^{1} i = 1 = \frac{(1)(1+1)}{2} \checkmark$$

Now suppose that this equality holds for n = k:

$$\sum_{i=1}^{k} i = \frac{k(k+1)}{2}$$

We can show that it also holds for n = k + 1:

$$\sum_{i=1}^{k+1} i = \sum_{i=1}^{k} i + (k+1) = \frac{k(k+1)}{2} + (k+1) = \frac{k^2 + 3k + 2}{2} = \frac{(k+1)(k+2)}{2}$$

Therefore, by mathematical induction, this equality holds for all $n \ge 1$.