Fundamental Math

Sara Pohland
Created: January 3, 2021
Last Modified: December 14, 2023

Contents

1 Set Theory
1.1 Notation 3
1.1.1 Common Sets 3
1.1.2 Quantifiers 4
1.2 Properties of Sets 4
1.2.1 Union and Intersection 4
1.2.2 Partition 5
2 Proofs 6
2.1 Implications 6
2.2 Types of Proofs 6

Chapter 1

Set Theory

1.1 Notation

1.1.1 Common Sets

Below is the notation that is typically used for several common sets:

1. \mathbb{Z} - integers
2. \mathbb{N} - natural numbers (non-negative integers)
3. \mathbb{R} - real numbers
4. \mathbb{R}_{+}- non-negative real numbers
5. \mathbb{R}_{++}- strictly positive real numbers
6. \mathbb{R}_{-}- non-positive real numbers
7. \mathbb{R}_{--}- strictly negative real numbers
8. \mathbb{C} - complex numbers
9. $\mathbb{C}_{+}-$complex numbers with non-negative real part
10. \mathbb{C}_{++}- complex numbers with strictly positive real part
11. \mathbb{C}_{-}- complex numbers with non-positive real part
12. \mathbb{C}_{--}- complex numbers with strictly negative real part
13. \mathbb{F} - real numbers \mathbb{R} or complex numbers \mathbb{C}
14. \emptyset - null/empty set (set with no elements)
15. S - universal set (set of all possible elements in a given context)

1.1.2 Quantifiers

Below are quantifiers that are commonly used in set theory:

1. \in - element of (a set)
2. $\notin-$ not an element of (a set)

3 . $\subset-$ proper subset (of a set)
4 . $\subseteq-$ subset of (a set)
5. $\nsubseteq-$ not a subset of (a set)
6. \forall - for all
7. \exists - there exists
8. \exists ! - there exists a unique
9. \nexists - there does not exist
10. $\ni, \mid,:-$ such that (s.t.)
11. $\neg-\operatorname{not}$

1.2 Properties of Sets

1.2.1 Union and Intersection

The union of two sets A and B is denoted $A \cup B$ and is defined as

$$
A \cup B=\{x: x \in A \text { or } x \in B\} .
$$

The intersection of two sets A and B is denoted $A \cap B$ and is defined as

$$
A \cap B=\{x: x \in A \text { and } x \in B\}
$$

The complement of set A is denoted A^{C} and is defined as

$$
A^{C}=\{x \in S: x \notin A\}
$$

De Morgan's law says that for two events A and B,

$$
(A \cup B)^{C}=A^{C} \cap B^{C}
$$

1.2.2 Partition

A collection of sets A_{1}, \ldots, A_{n} are mutually exclusive/disjoint if and only if

$$
A_{i} \cap A_{j}=\emptyset \forall i \neq j
$$

A collection of sets A_{1}, \ldots, A_{n} are collectively exhaustive if and only if

$$
\bigcup_{i=1}^{n} A_{i}=S
$$

where S is the universal set. A partition is a collection of sets that are both mutually exclusive and collectively exhaustive.

Figure 1.1: This is an example of a partition. The universal set, S , is the oval, which is composed of six disjoint and collectively exhaustive subsets, A_{1}, \ldots, A_{6}.

Chapter 2

Proofs

2.1 Implications

Below are implications that are commonly used in proofs:

$$
\begin{aligned}
& A \Longrightarrow B-\mathrm{A} \text { implies } \mathrm{B} \\
& A \Longleftarrow B-\mathrm{B} \text { implies } \mathrm{A} \\
& A \Longleftrightarrow B-\mathrm{A} \text { if and only if } \mathrm{B}
\end{aligned}
$$

2.2 Types of Proofs

Below are a list of five common types of proofs:

1. Direct Proof - Logically derive the conclusion $A \Rightarrow B$ directly from relevant definitions, assumptions, lemmas, theorems, etc.
Example: Prove that the sum of two odd numbers is even.
Consider two integers $x, y \in \mathbb{Z}$, where $x=2 k_{1}+1$ for some $k_{1} \in \mathbb{Z}$ and $y=2 k_{2}+1$ for some $k_{2} \in \mathbb{Z}$. We can show that $s:=x+y$ is even, using the following definition: a number $n \in \mathbb{Z}$ is even if $n=2 k$ for some $k \in \mathbb{Z}$.
$s=\left(2 k_{1}+1\right)+\left(2 k_{2}+1\right)=2 k_{1}+2 k_{2}+2=2\left(k_{1}+k_{2}+1\right)=: 2 k_{3}$, where $k_{3} \in \mathbb{Z}$
Therefore, s is even, proving that the sum of two odd numbers is even.
2. Proof by Contrapositive - Establish the conclusion $A \Rightarrow B$ by demonstrating that $\neg B \Rightarrow \neg A$. This is useful if it is easier to work with $\neg B$.
Example: Show that if x^{2} is even, then x is even.
We can derive this conclusion by showing that if x is odd, then x^{2} is odd. Suppose $x=2 k+1$ for some $k_{1} \in \mathbb{Z}$. Then,

$$
\left.x^{2}=\left(2 k_{1}+1\right)^{2}=4 k_{1}^{2}+4 k_{1}+1=2\left(2 k_{1}^{2}+2 k_{1}\right)\right)+1=: 2 k_{2}+1, \text { where } k_{2} \in \mathbb{Z}
$$

Therefore, x^{2} is odd if x is odd. Because an integer must either be even or odd, this allows us to say that x is even if x^{2} is even.
Example: Prove that not all odd numbers are prime.
3. Proof by Contradiction/Negation - Assume the given is true but the conclusion we want to show is false (i.e. A is true and B is false). Then show that the result contradicts this assumption. This then implies that the conclusion B must actually be true.
Example: Prove that $\sqrt{2}$ is an irrational number.
We can show this by finding a contradiction to the assumption that $\sqrt{2}$ is a rational number. We can use the following definition: a number q is rational if there exist $a, b \in \mathbb{Z}$ such that $q=a / b$, where $b \neq 0$. Assume that $\sqrt{2}$ is rational, meaning that $\exists a, b \in \mathbb{Z}$ such that $\sqrt{2}=a / b$. Without loss of generality, assume that a and b have no common factors.

$$
\sqrt{2}=a / b \Longrightarrow a^{2}=2 b^{2}
$$

Therefore, a^{2} is even, which implies that a is even, so $a=2 k_{1}$ for $k_{1} \in \mathbb{Z}$.

$$
\left(2 k_{1}\right)^{2}=2 b^{2} \Longrightarrow b^{2}=2 k_{1}^{2}
$$

Therefore, b^{2} is even, which implies that b is also even. Because a and b are both even, they have a common factor of 2 . We have found a contradiction to our assumption that $\sqrt{2}$ is a rational number whose fraction in the simplest form is a / b. Therefore, $\sqrt{2}$ is irrational.
4. Proof by Construction - Construct an example that shows the fallacy or validity of a statement. This is usually useful for disproving an assertion such as "all X are Y " or for confirming a statement such as "there exists an X such that Y."
Example: Prove that not all odd numbers are prime.
Consider the number 9 , which is odd because $9=2(4)+1$. The number 9 has the factors 1,3 , and 9 , so it is not prime. Therefore, not all odd numbers are prime.
5. Proof by Induction - First, prove the conclusion is true for an initial condition (e.g. $n=1$). Then, show that if the conclusion is true for $n=k$, then it must also be true for $n=k+1$.
Example: Prove that $\sum_{i=1}^{n} i=\frac{1}{2} n(n+1)$ for all $n \geq 1$.
First consider the initial case, where n is one:

$$
\sum_{i=1}^{1} i=1=\frac{(1)(1+1)}{2} \checkmark
$$

Now suppose that this equality holds for $n=k$:

$$
\sum_{i=1}^{k} i=\frac{k(k+1)}{2}
$$

We can show that it also holds for $n=k+1$:

$$
\sum_{i=1}^{k+1} i=\sum_{i=1}^{k} i+(k+1)=\frac{k(k+1)}{2}+(k+1)=\frac{k^{2}+3 k+2}{2}=\frac{(k+1)(k+2)}{2}
$$

Therefore, by mathematical induction, this equality holds for all $n \geq 1$.

